

My first name:				Volunteer:			Class:	
Multiplication								(20)
I know my $\square 2 \mathrm{x} \square 3 \mathrm{x} \square 4 \mathrm{x} \square 8 \mathrm{x}$ and $\square 10 \mathrm{x}$ tables								
I can multiply a \square 2-digit number by a 1-digit number and a \square 3-digit number by a 1-digit number using a written method								
I can use multiplication facts to help me. For example, I know $3 \times 2=6$ so $3 \times 20=60$								
1 know multiplication can be done in any order. So, $2 \times 32=32 \times 2=64$ ('commutative') I know that multiplying three numbers gives the same answer If I multiply the two left numbers first or if I do the two right numbers first ('associative') For example, $3 \times 4 \times 5=12 \times 5=60$, and $3 \times 4 \times 5=3 \times 20=60$								
I can solve real life maths problems. For example, how many different outfits can you can wear if you have 3 coats and 4 hats? (Each of 3 coats can have 4 hats, so there are $3 \times 4=12$ choices.)								
Division								(20)
I can divide a number by a 1-digit number using the written method ('short division')								
I can use multiplication facts in division. For example, $4 \times 8=32$ so $32 \div 8=4$ and $32 \div 4=8$								
Fractions								(20)
I know if a fraction has top and bottom the same it $=1$. \square 1/8$1 / 8$ $1 / 8$1/8$1 / 8$ $1 / 8$ 1/8								
I can add fractions up to 1 . For example, $5 / 7+1 / 7=6 / 7$ and $6 / 7+1 / 7=7 / 7$ which is 1								
I can subtract fractions with the same denominator. For example, $6 / 7-2 / 7{ }^{2} / 7$								
I can use < and > to compare the size of fractions. So $1 / 4<3 / 4$ and $4 / 5>3 / 5$.								
I can use diagrams to understand when fractions are the same. For example, $1 / 3=2 / 6$ and $1 / 5=2 / 10$								
I can make tenths from dividing an object such as a chocolate bar into 10 equal parts. \square 1 tenth ($1 / 10$) 3 tenths (3/10)								
I know that decimals are a way of writing fractions over 10.1 know that $0.1=1 / 10$ and $0.3=3 / 10$								
I know a number with units and one decimal are ones plus tenths. For example, $2.3=2+3 / 10$								
I can count up and down in tenths, both as $1 / 10,2 / 10.3 / 10,4 / 10 \ldots$ and as $0.1,0.2,0.3,0.4 \ldots$								
I can find (and write) a fraction of a set of objects. For example, $1 / 4$ of is 2 and $3 / 4$ of is 9								
Measurement								(20)
Length/Height: $\square \mathrm{I}$ know lengths in mixed metres and centimetres. For example, $120 \mathrm{~cm}=1 \mathrm{~m}$ plus 20 cm . $\square \mathrm{I}$ can measure the perimeter of simple 2D shapes such as rectangles.								
Money: $\square \mathrm{I}$ can add and subtract using all coins including $£ 1$ s and $£ 2$ s and mixed $£$ and pence up to $£ 100$. $\square \mathrm{I}$ can give change from $£ 10$.								
Time: I can tell time to the minute and use a.m. and p.m., noon/midday and midnight I know there are $\square 60$ seconds in a minute, $\square 60$ minutes in an hour, $\square 24$ hours in a day I know that in a normal year there are $\square 365$ days, with $\square 31,30$, or 28 days in each month I know that in a leap year there are \square 366 days, with \square 31,30 , or 29 days in each month								

