

fun + skills = confidence

2

My first name:	Volunteer:	Class:		
Number and counting				
I can read and write numbers to at least 1,000 in numerals (figures) and words			<u> </u>	
I can count from 0 in steps of:				
□ 4s □ 50s				
□ 8s □ 100s				
I know the place value of 3-digit numbers and can partition these into hundreds, tens, and ones				
(units). For example, 372 = 3 hundreds + 7 tens + 2 ones				
I can compare and order numbers to 1,000. For example, I know that 572 is smaller than 725				
Addition				
I can add numbers in my head ('do mental arithmetic'), including				
A 3-digit number and ones				
A 3-digit number and tens				
A 3-digit number and hundreds				
I can use addition facts to 10 to help with more difficult addition.				
For example, I know 5 +5 =10 and 5 + 3 = 8, so 95 + 8 = 95 + 5 + 3 = 100 + 3 = 103				
I can add 3-digit numbers in columns using				
regrouping ('carrying') as needed	+ 189 + 189			
6 4 5				
I can add groups of 10. For example, I know that $50 + 30 = 80$ and $80 + 50 = 130$.				
is about $80 + 30$, so it is about 110				
I can solve missing number problems such as $215 + \Box = 349$				
I know addition is the inverse of subtraction and I can check addition using subtraction				
			TITIT	
Subtraction				
I can subtract numbers in my head ('do mental arithmetic'), including				
A 3-digit number take away ones				
A 3-digit number take away tens				
A 3-digit number take away hundreds				
I can use addition facts in subtraction. 13 + 7 = 20 so $20 - 7 = 13$ and $20 - 13$	For example, = 7.	20 7		
I can subtract 3-digit numbers in columns, $\begin{bmatrix} H & T & 0 \\ G & A & 5 \end{bmatrix}$				
using regrouping ('borrowing') as needed $-\frac{189}{456}$				
I can subtract groups of 10. For example, I know that 50 - 30 = 20 and 120 - 50 = 70.				
I can estimate the answer when I am going to subtract one number from another. For				
example, 187 – 46 is about 190 – 50, so I know that the answer is about 140				
I can solve missing number problems such as 226 - 🗌 = 145				
I know subtraction is the inverse of addition and I can check subtraction sums using addition				

Number Champions 3

fun + skills = confidence

2

4

We are learning - Gold

My first name:	Volunteer:	Class:	
Multiplication			
I know my $\Box 2x \Box 3x \Box 4x \Box 8x$ and $\Box 10x$ tables			
I can multiply a 🗆 2-digit number by a 1-digit number and a 🗔 3-digit number by a 1-digit			
number using a written method			
I can use multiplication facts to help me. For example, I know 3 x 2 = 6 so 3 x 20 = 60			
I know multiplication can be done in any order. So, 2 x 32 = 32 x 2 = 64 ('commutative')			
I know that multiplying three numbers gives the same answer If I multiply the two left numbers			
first or if I do the two right numbers first ('associative')			
For example, 3 x 4 x 5 = 12 x 5 = 60, and 3 x 4 x 5 = 3 x 20 = 60			
I can solve real life maths problems. For example, how many different outfits can you can wear			
if you have 3 coats and 4 hats? (Each of 3 coats can have 4 hats, so there are 3 x 4 = 12 choices.)			
Division			
I can divide a number by a 1-digit number using the written method ('short division')			
I can use multiplication facts in division. For example, $4 \times 8 = 32$ so $32 \div 8 = 4$ and $32 \div 4 = 8$			
Fractions			
I know if a fraction has top and botton	n the same it = 1. <mark>1/8 1/8 1/8 1/8 1/8 1/8 1/8</mark>	1/8 1/8	
For example, 8/8 = 1. I can see this in	a diagram < one	>	
I can add fractions up to 1. For example, $\frac{5}{7} + \frac{1}{7} = \frac{6}{7}$ and $\frac{6}{7} + \frac{1}{7} = \frac{7}{7}$ which is 1			
I can subtract fractions with the same denominator. For example, $\frac{6}{7} - \frac{2}{7} = \frac{4}{7}$			
I can use < and > to compare the size of fractions. So $\frac{1}{4} < \frac{3}{4}$ and $\frac{4}{5} > \frac{3}{5}$.			
I can use diagrams to understand when fractions are the same. For example, $1/3 = 2/6$ 1/6 $1/6$ $1/6$ $1/6$ $1/6$ $1/61/3$ $1/3$ $1/3$ and $1/5 = 2/10$			
I can make tenths from dividing an ob	ject such as a chocolate bar into 10 equ 3 tenths	al parts. ; (3/10)	
I know that decimals are a way of writing fractions over 10. I know that $0.1 = \frac{1}{10}$ and $0.3 = \frac{3}{10}$			
I know a number with units and one decimal are ones plus tenths. For example, 2.3 = $2 + \frac{3}{10}$			
I can count up and down in tenths, both as 1/10, 2/10. 3/10, 4/10 and as 0.1, 0.2, 0.3, 0.4			
I can find (and write) a fraction of a se For example, ¼ of	t of objects.	is 9	
Measurement			
Length/Height: 🗆 I know lengths in mixed metres and centimetres . For example, 120cm = 1m			
plus 20 cm. I can measure the perimeter of simple 2D shapes such as rectangles.			
Money: \Box I can add and subtract using all coins including £1s and £2s and mixed £ and pence up to £100. \Box I can give change from £10.			
Time: I can tell time to the minute and use a m, and n m, noon/midday and midnight			
I know there are \Box 60 seconds in a minute. \Box 60 minutes in an hour. \Box 24 hours in a day			
I know that in a normal year there are \Box 365 days, with \Box 31. 30. or 28 days in each month			
I know that in a leap year there are \Box 366 days, with \Box 31. 30. or 29 days in each month			